

4. Provision of the equipment needed for waste collection and street cleaning

- 3. Absence of institutional, legal, and financial systems for solid waste management,
- 4. Conflicting responsibilities
- 5. Lack of accountability

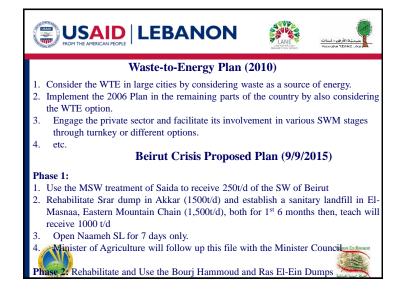
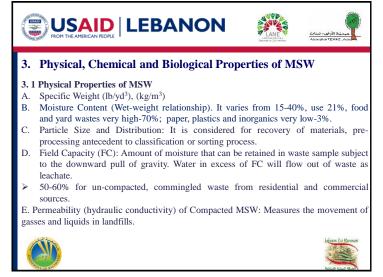


Table 1: Municipal Solid Waste Management Master Plan (2006)

Service Area	MSW Generation (t/d)	Sanitary Landfills				Sorting Plants	
		No	Proposed Location	No	Proposed Location	No	Proposed Location
North Lebanon & Akkar	712	1	Srar	1	Srar	1	Srar
Bekaa & Baalbeck- Hermel	425	2	Zahleh & Tebeh	2	Zahleh & Tebeh	2	Zahleh & Tebeł
South Lebanon & Nabatiyeh	626	2	Bsaffour Shakraa Barashit	2	Bsaffour Shakraa Barashit	2	Bsaffour Shakraa Barashit
Beirut & Mount Lebanon	2300	1 or 2	Jieh (Dahr Mghara) or Khreybeh	1 or 2	Jieh (Dahr Mghara) or Khreybeh	1 or 2	Jieh (Dahr Mghara) or Khreybeh
Lebanon	4,063	6-7	-	6-7	-	6-7	-
							befrenn En Man

Policy, Legal and Administrative Framework

- No well-defined national policy on waste management, and no specific regulations regarding the treatment of waste.
- Administratively, the local municipality in coordination with Ministry of Interior and Municipalities (MIM) is responsible for MSW management at a local level.
- At a global level, the Council for Development and Reconstruction (CDR) in consultation with MIM, and the Ministry of Environment (MOE), is the ultimate responsible authority for the development and implementation of a national policy to manage MSW disposal



3.2 Chemical Properties of MSW

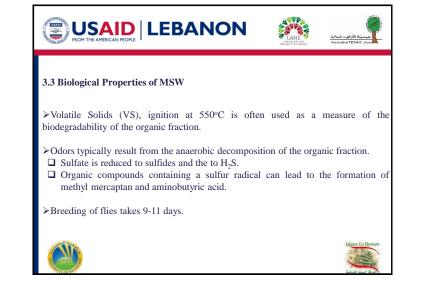
A. Proximate Analysis includes the following tests:

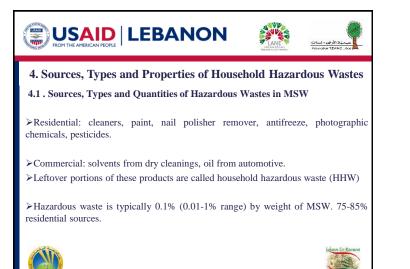
- Moisture
- Volatile combustible matter
- Fixed carbon (combustible residue after volatile matter is removed)
- Ash (weight of residue after combustion in an open crucible

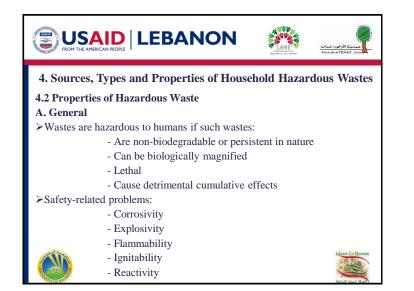
B. Ultimate Analysis of SW Components

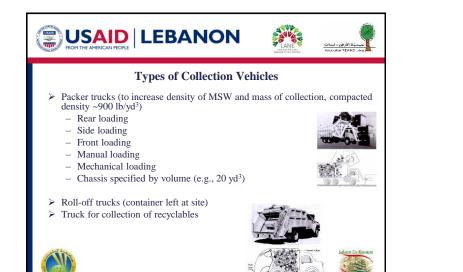
- Determination % of Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen (N), Sulfur (S), and ash.
- Chance to calculate chemical formula, which will be used in many chemical and biological reactions.

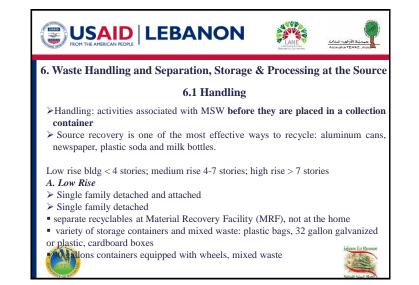
C. Energy Content of SW Components


> It is potentially critical element in incineration and can be measured or calculated.


D. Essential Nutrients


> Theoretically they are critical elements in composting.





Alternative	Advantages	disadvantages	Favoring conditions	
Once per week or less	Less expensive less fuel	Stored waste can create odor & vector problems	Cold to moderate climate	
Twice per week	Reduces litter & storage requirement	More expensive ,more fuel	Warm climate	
More than twice per week	Reduces litter & storage requirement	More expensive more fuel	Dense population	

B. Low and Medium Rise

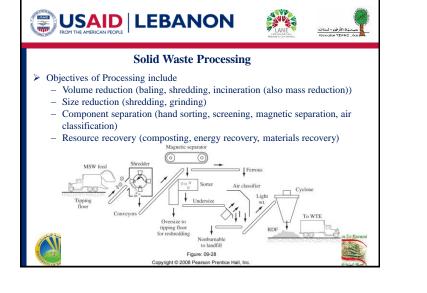
- ▶ Basement storage by residents and moving of container by maintenance personnel.
- Large outdoor containers, located in special areas that are emptied mechanically by collection truck.

C. High Rise Apartments

- > Porters pick up the waste at the apartment door.
- ➤ Wastes are taken to the SW area by tenants
- Chutes on each floor (12-36")
- > Use 1-2lbs/tenant/day

D. Commercial and Industrial Facilities

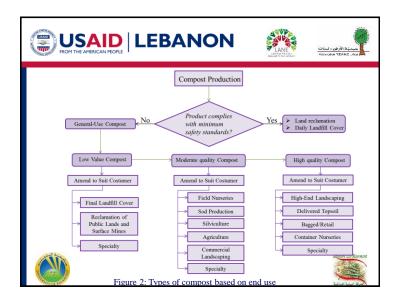
Commercial - removed from work area by wheeled containers and transported via service area to disposal / processing area. Compaction would not be unusual.

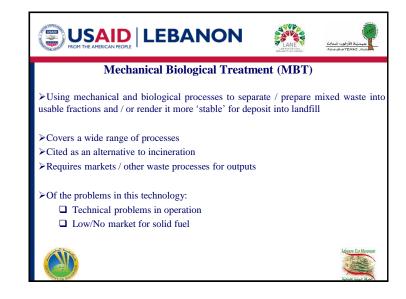


B. Types of Storage Containers

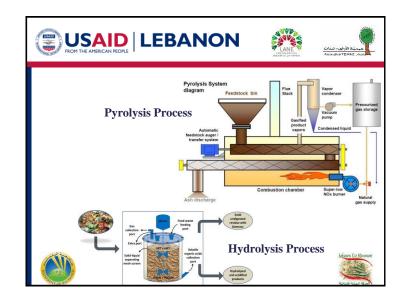
- For residential containers, manually collected, the max. weight should be 40-65lbs as not injure the collector.
- ▶ 32 gallons galvanized or plastic is the most common.
- Temporary and disposable containers such as cardboard boxes, plastic bags and paper bags are common.
- Low rise: trend towards 1 man collection crews with vehicles with mechanical, articulated arms and 90 gallon containers,
- **Low and medium rise**: dumpsters, portable or not, galvanized or plastic
- ➢ High rise: more proned to have processing equipment: compaction, shredding, baling.
- Container Locations: side or rear of house, alleys, common location identified for that purpose.

parison of specific composition of MSW in several countries					
%					
Lebanon	Cairo	Sweden	France	U.S.A.	Components
55	59.5	12	24	22.5	Organic materials
15	15.75	55	29.6	42	Paper
15	1.9	6	4.2	8	Plastic & Metals
5	1.8	15	3.5	6	Glass
10	14.9	-	2.4	10.5	Others





	BANON 👯 🔐
Туј	pes of Composting
 Aerobic and Anaerobic Deco In-Vessel Composting Proces and Vessels; Rotating Drums 	sses (Enclosed Aerated Static Piles; Agitated Beds
Technology	Range of Area Requirement
	(acre per dry ton per day)
Turned windrow	0.51 - 0.67
Aerated static pile	0.27 – 0.54
In-vessel reactors	0.39 - 0.56
	Adjunt En Monent



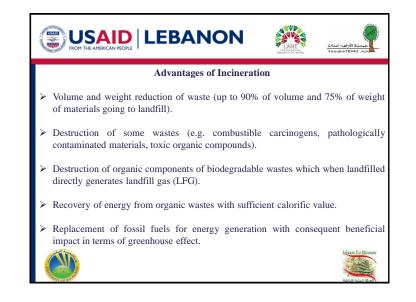
Incineration

It is the combustion of waste in a controlled manner in order to destroy it or transform it into:

- less hazardous
- less bulky
- more controllable constituents.

Incineration may be used to dispose of a wide range of waste streams including municipal solid waste (MSW), commercial, clinical and certain types of industrial waste.

Incineration is generally the <u>second more frequently selected method</u> of waste management after landfilling. Disposal is a major concern of incineration because landifill space is becoming scarce. Incineration of MSW with energy recovery can be viewed as an attractive alternative to landfilling in many situations.


Principles of Municipal Solid Waste Incineration

- Incineration can be viewed as the flame-initiated, high temperature air <u>oxidation</u> of organic matter.
- Incineration can only destroy organic compounds, but not inorganic (mineral) compounds which end up as residual ash. Because waste must be oxidised nearly completely (99.99% destruction and removal capacity is required) a large excess of air is used to ensure the sufficient oxygen to do the job.
- Emissions from waste incinerators include unburned organic wastes, products of uncomplete combustion or by-products of combustion, heavy metals, acid gas, ash and others. They can be controlled by modern air pollution control equipment to very low rates.
- Incineration has advantages and disadvantages when compared with other methods of waste treatment, so it is not always the preferred choice.

- High capital investments requires longer payback period than final disposal to landfill.
- Because of high capital costs, the incinerator must be tied to long-term waste disposal contracts.
- Incinerator is designed on the basis of certain calorific value for the waste. Removal of materials such as paper or plastics for recycling and resource recovery reduce the overal calorific value of the waste and consequently affect incinerator performance
- Incineration proces still produce a solid waste residue that requires management and final disposal
- Burning matter does not destroy it. Burning it converts it into another form and redistributes it in the air, land and water

		ANE AND - LAND - LAND Association TEAKE - Joint			
	MOE Landfill Selection Criteria				
Siting	Distance between Boundary and Residences	1,000 m			
	Maximum height	300 m above sea level			
Capacity	Area	30,000 - 50,000 m ²			
Location	Not within agricultural or forestry area				
Water Supply	Distance away from river and perennial Stream	50m			
		Indignor Eco Marmont			

	EU Landfill Selection Crite	BRARE 2.3- VENUE
		· · · · · · · · · · · · · · · · · · ·
Siting	Distance between Boundary and Residences	500 m
Distance	Direct Haul	30 – 45 minutes
And Capacity	Haul and Transfer	\leq 120 minutes
	Minimum Capacity	10 years
Ground Water	10 year High Level	\geq 1.5 m below
	Soil Permeability	$\leq 10^{-6}$ cm/sec
	Away from area susceptible to flood	
Water Supply	Distance between perimeter of Landfill and Well	500 m
	Distance away from perennial Stream	30 m

